Tensorial Spherical Polar Fourier Diffusion MRI with Optimal Dictionary Learning
نویسندگان
چکیده
High Angular Resolution Diffusion Imaging (HARDI) can characterize complex white matter micro-structure, avoiding the Gaussian diffusion assumption inherent in Diffusion Tensor Imaging (DTI). However, HARDI methods normally require significantly more signal measurements and a longer scan time than DTI, which limits its clinical utility. By considering sparsity of the diffusion signal, Compressed Sensing (CS) allows robust signal reconstruction from relatively fewer samples, reducing the scanning time. A good dictionary that sparsifies the signal is crucial for CS reconstruction. In this paper, we propose a novel method called Tensorial Spherical Polar Fourier Imaging (TSPFI) to recover continuous diffusion signal and diffusion propagator by representing the diffusion signal using an orthonormal TSPF basis. TSPFI is a generalization of the existing model-based method DTI and the model-free method SPFI. We also propose dictionary learning TSPFI (DL-TSPFI) to learn an even sparser dictionary represented as a linear combination of TSPF basis from continuous mixture of Gaussian signals. The learning process is efficiently performed in a small subspace of SPF coefficients, and the learned dictionary is proved to be sparse for all mixture of Gaussian signals by adaptively setting the tensor in TSPF basis. Then the learned DL-TSPF dictionary is optimally and adaptively applied to different voxels using DTI and a weighted LASSO for CS reconstruction. DL-TSPFI is a generalization of DL-SPFI, by considering general adaptive tensor setting instead of a scale value. The experiments demonstrated that the learned DL-TSPF dictionary has a sparser representation and lower reconstruction Root-Mean-SquaredError (RMSE) than both the original SPF basis and the DL-SPF dictionary.
منابع مشابه
Regularized Spherical Polar Fourier Diffusion MRI with Optimal Dictionary Learning
Compressed Sensing (CS) takes advantage of signal sparsity or compressibility and allows superb signal reconstruction from relatively few measurements. Based on CS theory, a suitable dictionary for sparse representation of the signal is required. In diffusion MRI (dMRI), CS methods proposed for reconstruction of diffusion-weighted signal and the Ensemble Average Propagator (EAP) utilize two kin...
متن کاملMulti-shell Sampling Scheme with Accurate and Efficient Transforms for Diffusion MRI
We propose a multi-shell sampling grid and develop corresponding transforms for the accurate reconstruction of the diffusion signal in diffusion MRI by expansion in the spherical polar Fourier (SPF) basis. The transform is exact in the radial direction and accurate, on the order of machine precision, in the angular direction. The sampling scheme uses an optimal number of samples equal to the de...
متن کاملOptimal Design of Multiple Q-shells experiments for Diffusion MRI
Recent advances in diffusion MRI make use of the diffusion signal sampled on the whole Q-space, rather than on a single sphere. While much effort has been done to design uniform sampling schemes for single shell experiment, it is yet not clear how to build a strategy to sample the diffusion signal in the whole Fourier domain. In this article, we propose a method to generate acquisition schemes ...
متن کاملModel-Free and Analytical EAP Reconstruction via Spherical Polar Fourier Diffusion MRI
How to estimate the diffusion Ensemble Average Propagator (EAP) from the DWI signals in q-space is an open problem in diffusion MRI field. Many methods were proposed to estimate the Orientation Distribution Function (ODF) that is used to describe the fiber direction. However, ODF is just one of the features of the EAP. Compared with ODF, EAP has the full information about the diffusion process ...
متن کاملCompressive Sensing Ensemble Average Propagator Estimation via `1 Spherical Polar Fourier Imaging
In diffusion MRI (dMRI) domain, many High Angular Resolution Diffusion Imaging (HARDI) methods were proposed to estimate Ensemble Average Propagator (EAP) and Orientation Distribution Function (ODF). They normally need many samples, which limits their applications. Some Compressive Sensing (CS) based methods were proposed to estimate ODF in Q-Ball Imaging (QBI) from limited samples. However EAP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015